Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D ) Frames and Stable Bases for Shift-invariant Subspaces of L 2 (ir D )

نویسندگان

  • Amos Ron
  • Zuowei Shen
چکیده

Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : `2(X)! H : c 7! X

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

A Range Function Approach to Shift-Invariant Spaces on Locally Compact Abelian Groups

This paper develops several aspects of shift-invariant spaces on locally compact abelian groups. For a second countable locally compact abelian group G we prove a useful Hilbert space isomorphism, introduce range functions and give a characterization of shift-invariant subspaces of L 2 (G) in terms of range functions. Utilizing these functions, we generalize characterizations of frames and Ries...

متن کامل

Frames and Stable Basesfor Shift - Invariant Subspaces of L 2 ( IRd )

Let X be a countable fundamental set in a Hilbert space H, and let T be the operator X x2X c(x)x: Whenever T is well-deened and bounded, X is said to be a Bessel sequence. If, in addition, ran T is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis (also known as a Riesz basis). This paper considers the above three properties for subspaces H of L 2 ...

متن کامل

Approximation from shift - invariant subspaces of L 2 ( IR d )

Abstract: A complete characterization is given of closed shift-invariant subspaces of L2(IR) which provide a specified approximation order. When such a space is principal (i.e., generated by a single function), then this characterization is in terms of the Fourier transform of the generator. As a special case, we obtain the classical Strang-Fix conditions, but without requiring the generating f...

متن کامل

Non - Uniform Sampling in Multiplygenerated Shift - Invariant Subspaces

Given the samples ff(x j) : j 2 J g of a function f belonging to a shift invariant subspace of L p (IR d), we give a fast reconstruction algorithm that allows the exact reconstruction of f , as long as the sampling set X = fx j : j 2 J g is suuciently dense.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994